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for the simulation of electrically large or transient problems
in electromagnetics [2–4].This paper present a multidomain pseudospectral method for

accurately solving Maxwell’s equations in the time domain. The Traditional spectral methods suffer from having a fixed
scheme is developed for computing scattering by two-dimensional distribution of grid points, thereby making it difficult to
smooth perfectly conducting objects like circular or elliptic cylinders apply such methods for solving problems with strong inter-
in free space and utilizes a Fourier collocation method in the azi-

nal layers or problems in complex geometries. Using amuthal direction and a multidomain Chebyshev collocation method
multidomain approach, i.e., splitting the computational do-in the radial direction. Proper absorbing boundary conditions are

discussed and a new perfectly matched layer (PML) method in polar main into several geometrically simple body conforming
coordinates is constructed and shown to be superior to other PML domains, has proven to be a powerful way of overcoming
methods. For the elliptic cylinders we propose to use a matched these restrictions on the applicability of spectral methods
layer in connection with the multidomain approach and a cubic

(see, e.g., [5]). Moreover, such an approach allows for angrid mapping. Numerical results of monochromatic electromagnetic
efficient implementation on contemporary parallel com-scattering by circular and elliptic perfectly electrically conducting

cylinders are presented. Comparisons between results obtained us- puters [6] and relieves much of the computational burden
ing the multidomain pseudospectral method and the finite-differ- of spectral methods even on serial computers, since one
ence time domain method clearly illustrate the superiority of spec- can increase the number of subdomains rather than the
tral methods in obtaining accurate values for the scattered fields

number of points in each subdomain resulting in a signifi-and the bistatic radar cross section. Q 1997 Academic Press

cant decrease in the total computational cost; see, e.g., [7].
In the present work we propose a multidomain pseudo-

spectral method for accurately solving the time domain1. INTRODUCTION
Maxwell’s equations. The scheme is developed to demon-

The finite-difference-time-domain (FD-TD) method, so strate the accurate computation of scattering by smooth
extensively used for computing electromagnetic scattering perfectly conducting two-dimensional objects in free
by general objects, suffers from the requirement of having space and utilizes a Fourier collocation method in the azi-
10–20 grid points per wavelength to obtain sufficiently muthal direction and a multidomain Chebyshev collocation
accurate solutions of the scattered fields. Indeed, in cases method in the radial direction. Besides demonstrating the
of transient excitation of the scatterer one must often use efficacy of pseudospectral multidomain methods for ad-
a significantly denser grid. Such requirements inhibit the dressing scattering problems we shall also show that such
use of FD-TD methods for accurately computing electro- an approach has several additional advantages.
magnetic scattering by electrically large objects and tran- One of the most important, and as yet unsolved, prob-
sient phenomena. lems in computational electromagnetics is the issue of ob-

On the other hand, it is well known [1] that the Fourier taining solutions of infinite domain problems from finite
spectral method requires only two points per wavelength domain numerical computations. Truncation of the compu-
while the Chebyshev spectral method needs approximately tational domain introduces an artificial boundary and the
f points per wavelength to accurately resolve a wave. crucial issue is how to design absorbing boundary condi-
Hence, using spectral methods for the solution of scattering tions (ABC) such that outgoing waves are absorbed with-
problems promises a very significant decrease in the re- out reflections which may otherwise re-enter the domain
quired number of grid points compared to FD-TD methods and falsify the computational results.
while maintaining the accuracy in time and space. This A characteristic type ABC, requiring the incoming char-
again suggests that spectral methods are very well suited acteristic variable to vanish at the boundary, has often been

used with high order methods. In [4], Kabakian proposed a
single-domain spectral algorithm for electromagnetic wave1 Corresponding author.
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scattering, using a characteristic type boundary condition In simulations of wave scattering by perfectly electrically
conducting (PEC) circular cylinders, the new polar PMLand satisfying results at early stages of the time integration

(5–6 wave periods) were presented. However, we shall method is shown to yield the best results. Although the
direct implementation of the rectangular PML methodshow that applying a characteristic type boundary condi-

tion causes significant reflections from the outer boundary, gives much better results than for the FD-TD methods, it
is inferior to the new polar PML method by more than anunless the outer boundary is put very far away from the

scatter, i.e., at a distance of 12–20 wavelengths from the order of magnitude. In simulations of wave scattering by
PEC elliptic cylinders, we consider the use of the rectangu-scatter.

As a very attractive alternative to the characteristic lar PML method and the ML method to find results of
comparable accuracy for these particular cases.ABC, Berenger [8] proposed a perfectly matched layer

(PML) method for reflectionless truncation of FD-TD The remaining part of the paper is organized as follows.
In Section 2, we give the nondimensional Maxwell’s equa-wave simulations, with the property that the nonphysical

absorbing layer is reflectionless, regardless of the angle of tions and transformations. Section 3 discusses the basic
properties of the proposed pseudospectral multidomainincidence and the frequency of the wave, although one

should recall that the effectiveness of the layer in actual scheme, while Section 4 is devoted to a discussion of the
absorbing boundary layer methods. In Section 5, numericalcomputations depends on the width of the absorbing layer

utilized in the simulation. However, it was recently shown results validating the methods will be presented while con-
cluding remarks are given in Section 6.[9] that the split-field equations utilized in the PML are

only weakly well-posed and may be explosively unstable
under small perturbations, although this exponential 2. THE NONDIMENSIONAL MAXWELL’S EQUATIONS
growth has yet to be observed in most of the numerical
experiments reported to date. We present a generalization We consider the two-dimensional transverse magnetic
of the PML method to polar coordinates which differs (TM) mode for which Maxwell’s equations become
from those proposed in previous works [10–12]. This new
polar PML is shown to admit plane wave solutions that
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, (1)match at a circular vacuum–layer interface, while decaying

in any angle of propagation inside the layer.
For comparison, we give a direct implementation of the

where W̃ 5 (H̃x , H̃y , Ẽz)T with H̃x , H̃y , and Ẽz beingoriginal rectangular PML method in the cylindrical compu-
respectively the magnetic field components in the x̃ and ỹtational domain and also consider an alternative way of
directions and the electric field component normal to theapplying the matched layer (ML) method, which involves
domain of calculation anda grid mapping and the use of high order filtering. The

ML methods have the advantage that, unlike the PML
methods, one only needs to solve Maxwell’s equations with
additional absorbing terms; i.e., it is applicable in any gen-
eral curvilinear formulation of the Maxwell’s equations,
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terface.
The requirement for complex absorbing boundary con-

ditions highlights yet another advantage of the multido-
main approach as we may simply dedicate the outer subdo-

Here «0 and e0 are the free space permittivity and perme-mains to deal with such boundary conditions. Whether we
ability, with the speed of light in free space being c̃ 5need to solve equations different from Maxwell’s equa-
(«0e0)21/2.tions, as in the PML methods, or we need to modify the

The system can be nondimensionalized through theequations with absorbing terms, as in the ML methods,
change of variables,everything is done locally in the domain being at the great-

est distance from the scatter—we shall later refer to this
domain as the absorbing layer subdomain. In the FD-TD x 5 x̃/L, y 5 ỹ/L, t 5 c̃t̃/L,
implementation of the rectangular PML method [8], a
small amount of numerical reflection at the vacuum–layer

where L represents a length scale and the fields are normal-interface was observed. However, in a multidomain ap-
ized asproach, derivatives are not computed across the vacuum–

layer interface, thereby reducing the numerical reflec-
Hx 5 H̃x , Hy 5 H̃y , Ez 5 Ï(«0/e0)Ẽz 5 Z21

0 Ẽz ,tions significantly.
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where Z0 represents the free-space impedance and we in- l1 5 0, l2 5 21, l3 5 1, (8)
troduce the nondimensional vector, W 5 (Hx , Hy , Ez)T,
to obtain the nondimensional and symmetric system, and we observe that Â can be diagonalized by

W
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5 A
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1 B
W
y

, (3)
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The characteristic variables, S TW, are needed for applyingThis form of the free-space Maxwell’s equations is more
characteristic boundary condition as we shall discussconvenient for analysis, as well as for computations, and
shortly.is generally applicable when the material parameters are

In polar coordinates we recoverconstant, it being the situation we have chosen to restrict
our attention in the present work. One only needs to scale
the physical fields initially and to transform them back Hr

t
5 2

1
r
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uafter the final step of the time integration.
In general curvilinear coordinates the system (3) be-

comes
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Ŵ
j

1 B̂
Ŵ
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where Ŵ 5 JW with J being the transformation Jacobian, 3. THE COMPUTATIONAL SCHEME

The purpose of this paper is to demonstrate the efficacyJ 5 xjyh 2 xhyj ,
of a pseudospectral multidomain approach for the simula-
tion of electromagnetic wave scattering by smooth cylin-while
ders in free space. For this geometry it is natural to solve
the problem in polar coordinates, Eq. (9). The solution is
periodic in the azimuthal direction and the Fourier colloca-

F̂ 5 J 1
2jyEz

jxEz

jxHy 2 jyHx
2 , Ĝ 5 J 1

2hyEz

hxEz

hxHy 2 hyHx
2 , (6) tion method is suitable in this direction. The Chebyshev

collocation method is used in the radial direction, and for
the temporal discretization, a fourth-order Heun Runge–
Kutta method [13] is used. High order filtering, a multido-

leading to main decomposition technique, and a cubic grid mapping
technique are also employed, as we shall discuss shortly.
A characteristic type boundary condition is applied at the
scatter interface.Â 5

F̂
Ŵ

5 1
0 0 2jy

0 0 jx

2jy jx 0
2 ,

(7)

In the following, we describe the basic ingredients of
the numerical scheme in polar coordinates.

• The Fourier collocation method. Given the values,
u(uj), at the Fourier collocation points: uj 5 fj/N, j 5

B̂ 5
Ĝ
Ŵ

5 1
0 0 2hy

0 0 hx

2hy hx 0
2 . 0, ..., 2N 2 1, we seek an interpolating trigonometric poly-

nomial of degree N,

We assume that j 2
x 1 j 2

y 5 1 so that the eigenvalues of INu(u) 5 ON21

k52N
ũkeiku, (10)

matrix Â become
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where
INu(u) 5 ON21

k52N
ũkeiku, (17)

ũk 5
1

2N O2N21

j50
u(uj)e2ikuj, (11)

we modify the original sum (17) as

and then we compute the derivative of the trigonometric
us

N(u) 5 ON21

k52N
ũks Sk

ND eiku. (18)polynomial,

using the exponential filter,(INu)9(u) 5 ON21

k52N
ikũkeiku, (12)

at the Fourier collocation points uj . s Sk
ND5 e2a(k/N)m

, (19)
This procedure involves two FFT’s, requiring O(N log2

N) operations, one for the interpolation and one for the
where m is the order of the filter and a 5 2log(«) with «evaluation of the derivatives. We can also get the deriva-
being the machine zero. By choosing m to be proportionaltives directly by a matrix–vector multiplication by noting
to N, we maintain the exponential accuracy of the spec-that the interpolating Fourier series can be expressed in
tral methods.terms of a Lagrange interpolation polynomial.

The filtering formula for the Chebyshev case is similar.
• The Chebyshev collocation method. Given the values, The only difference is that the Fourier interpolation, Eq.

u(rj), at the Chebyshev Gauss–Lobatto collocation points (17), is replaced by the Chebyshev interpolation, Eq. (13).
given as rj 5 cos(fj/N), j 5 0, ..., N, we seek an interpolating

• Multidomain decomposition. The multidomain decom-polynomial of degree N,
position method has been successfully used with spectral
methods to deal with wave problems in complex geome-

INu(r) 5 ON
k50

ũkTk(r), (13) tries [5]. In the present application, the multidomain de-
composition technique is used to allow for the implementa-
tion of various types of absorbing boundary conditions in

and compute the derivative of the polynomial, the absorbing layer subdomain and to decrease the compu-
tational workload [7].

At the interface of any two subdomains, the characteris-(INu)9(r) 5 ON
k50

ũ9kTk(r). (14)
tic relations are used to patch the field values. We enforce
the characteristic variables along incoming characteristics

The coefficients, ũ9k , are computed from the coefficients ũk in each subdomain to be the same as that along the outgo-
by using the backward recurrence relation ing characteristics in the neighboring subdomain. The zero

speed characteristic variables are averaged across the inter-
face and the outgoing characteristic variables are pre-ũ9N11 5 ũ9N 5 0,

(15) served. Denote by C1
j,n , C2

j,n , and C0
j,n , n 5 1, 2 (represent-

ing two neighboring subdomains), the characteristicckũ9k 5 ũ9k12 1 2(k 1 1)ũk11 , k 5 0, 1, ..., N 2 1,
variable values computed after any time step, correspond-
ing to outgoing, incoming, and zero-speed characteristics,where
respectively, at the subdomains interface. Then we solve
the following system to update the field values at the in-
terface:ck 5H2, if k 5 0,

1, otherwise.
(16)

C1
j 5 C1

j,1 ,
This procedure involves two CFTs, requiring O(N log2 C2

j 5 C2
j,2 , (20)N) operations, one for the interpolation and one for the

evaluation of the derivatives. We can also get the deriva- C0
j 5 As(C0

j,1 1 C0
j,2).

tives directly by a matrix–vector multiplication by noting
that the interpolating polynomial can be expressed in terms Note that the unknowns are on the LHS and the RHS
of a Lagrange interpolation polynomial. represent computed values. As we shall discuss in more

detail in Section 4.2.3, the patching scheme is a little more• Filtering. Given the Fourier series interpolation for
u(u), complicated at the vacuum–layer interface when using
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PML-type absorbing layers. However, the general idea of ing waves from being reflected from the artificial numeri-
cal boundaries.passing information along the characteristics remains the

same also at such interfaces. In the following sections we shall discuss several
schemes, among them some new methods, suitable for• Cubic grid mapping. For our implementations of the
dealing with this problem in the context of electromagneticabsorbing boundary conditions and the generation of an
scattering, and subsequently address the performance ofappropriate mesh outside an ellipse, a cubic grid mapping is
the different methods through actual implementations ofadopted to map the Chebyshev Gauss–Lobatto collocation
the various schemes.points rj to points Rj , j 5 0, ..., N, in an interval [R0 , RN]

as desired, with the map being
4.1. The Characteristic and the ML Methods

The simplest type of absorbing boundary conditions,Rj 5 C1 ? (rj 1 C0)3 1 R0 2 C1 ? (1 1 C0)3, (21)
known as the characteristic boundary conditions, is en-
forced by imposing the incoming characteristic variable towhere
be zero and has been used with spectral methods in previ-
ous applications [4]. This approach, however, is less well
suited in connection with long time integration of Max-C1 5

RN 2 R0

(C0 2 1)3 2 (C0 1 1)3 , j 5 0, ..., N. (22)
well’s equations using a spectral method as the following
example shall illustrate.

Consider the plane wave solutions of the nondimen-The constant C0 is free.
sional Maxwell’s equations, Eq. (3),We shall find the cubic mapping useful in several aspects

of the implementation of the absorbing layers as it allows
for physically extending the absorbing layer subdomain in Hx 5 sin feig(t2x cos f2y sin f)

the radial direction while maintaining a high resolution at
Hy 5 2cos feig(t2x cos f2y sin f) (23)the vacuum–layer interface at no additional computational

cost. The increased width of the absorbing layers yields an Ez 5 eig(t2x cos f2y sin f),
increased efficiency of the absorbing layers and results in
the required additional accuracy commensurate with the with f being the angle of propagation of the plane wave.
use of pseudospectral methods as compared to more tradi- For a circular exterior boundary, one applies the charac-
tional FD-TD methods. We shall return to this topic in teristic boundary conditions by enforcing the incoming
Section 4.1 and Section 4.2.3. characteristic variable to be zero as

• Boundary condition at the scatter. Applying appro-
priate boundary conditions is crucial to the stability and sin uHx 2 cos uHy 1 Ez 5 0. (24)
accuracy of the collocation methods. As we are concerned
with scattering by perfectly conducting bodies in free space, For the plane wave solutions, Eq. (23), we have
we shall find it useful to solve the problems in scattered
field formulation [12] as described in more detail in Section sin uHx 2 cos uHy 1 Ez 5 (1 2 cos(u 2 f))eig(t2x cos f2y sin f).
5. Hence, we shall only consider the case of Dirichlet

(25)boundary conditions by enforcing the physical boundary
conditions of vanishing tangential electric field and normal
magnetic field. Hence, this boundary condition is exact only if u 5 f,

In the case of TM-scattering as considered here, we i.e., when the plane wave propagates perpendicular to the
impose the exact boundary condition for Ez and apply the exterior boundary. The error in applying the characteristic
type of boundary treatments outlined for linear hyperbolic type boundary condition is O((u 2 f)2).
systems by Gottlieb et al. [14]; i.e., we use the characteristic One solution to this problem is to apply the multidomain
relations to get the other field values. A similar treatment approach and push the outer boundary of the absorbing
is applicable in the case of TE-scattering. layer subdomain sufficiently far away from the scatter. If

r is large enough, the solution of electromagnetic wave
scattering problems will be composed of plane waves with4. ABSORBING BOUNDARY CONDITIONS FOR
local direction f P u. In the multidomain formulation oneMAXWELL’S EQUATIONS
may accomplish this by using a cubic grid mapping, Eq.
(21), for the Chebyshev grid in the radial direction. This hasA long-standing problem is computational electromag-

netics has been the issue of finding infinite space solutions the advantage of maintaining the computational workload
while the grid in the radial direction transit gradually fromon a finite numerical domain. The issue is to prevent outgo-
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by simple perfectly conducting objects. Moreover, there
are no restrictions as to how exactly the ML is introduced
into the computation; in particular the ML method is appli-
cable in general curvilinear coordinates, although it is very
important that the ML method be combined with the use
of grid stretching and filtering. However, for more general
polychromatic problems the performance of the ML meth-
ods remains unknown and we advocate that one uses the
better understood PML methods for such problems.

The position of the ML layer, the conductivity profile
of the layer (usually second to fourth order) and the cubic
grid mapping can be tuned to reduce the reflections from
the layer, much like tuning the PML layer as we shall see
in the following.

4.2. The PML Methods

Ideally, an absorbing layer should be reflectionless with
no dependence on the frequency and the direction of prop-
agation of the waves. This is the purpose of the perfectly
matched layer methods.FIG. 1. A mesh utilizing a cubic grid mapping in the absorbing

layer subdomain.

4.2.1. The Rectangular PML Method

In [8], Berenger proposed a PML method in rectangular
coordinates. We present it here with some simple modifi-fine to coarse away from the scatter as illustrated in Fig.
cations. Consider the nondimensional PML type equations1. The grid becomes so coarse near the outer boundary
with spatially varying absorbing terms likethat the f points per wavelength rule [1] is violated. We

find it to be necessary to apply a high order filter (Eq.
(19), with the order of the filter m being close to N) follow- Hx

t
5 2

(Ezx 1 Ezy)
y

2 eyHxing each time integration step to maintain stability of
the scheme.

A better method is to combine the matched layer (ML) Hy

t
5

(Ezx 1 Ezy)
x

2 «xHy (27)
method with the grid mapping and the high order filtering
technique. The ML method solves the nondimensional
Maxwell’s equations in the absorbing medium as

Ezx

t
5

Hy

x
2 «xEzx

W
t

5 A
W
x

1 B
W
y

2 f (x, y)W, (26)
Ezy

t
5 2

Hx

y
2 eyEzy ,

where f (x, y) $ 0 in the layer and f(x, y) 5 0 at the where « and e are functions of x and y, respectively,
vacuum–layer interface. The ML layer is put inside the
absorbing layer subdomain at some distance from the sub- « 5 «(x), e 5 e(y). (28)
domain interface and the cubic grid mapping is used to
generate a mesh that is coarse in the part of the outer Formally, we have the following plane wave solutions to
subdomain covered by the ML layer. Since a coarse mesh the above PML type equations:
is used here, the number of grid points per wavelength
decreases, and hence waves propagating into this area will Hx 5 sin feig(t2x cos f2y sin f)e2« cos f2e sin f

appear as high frequency waves. With the help of a low
Hy 5 2cos feig(t2x cos f2y sin f)e2« cos f2e sin f

(29)
pass filter, the reflections in the ML region, being of high
frequency relative to the local grid, will be filtered out. Ezx 5 cos2 feig(t2x cos f2y sin f)e2« cos f2e sin f

Although the ML method certainly is simpler than the
Ezy 5 sin2 feig(t2x cos f2y sin f)e2« cos f2e sin f.more elaborate PML methods which we introduce in the

following section, they are found to perform well within the
present context, i.e., considering monochromatic scattering It is impotant that the solution is continuous across the
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interface between the free space region and the PML re- We refer to this method as the Navarro polar PML method.
This approach is also suggested by Rappaport in [10]. How-gion. This dictates that « and e must vanish on the interface

boundary. If we also impose the condition that «x(x) and ever, as we shall show through experiments, this method
does not perform well in practice. We therefore suggestey(y) at the interface then the equations are well defined

globally in free space, as well as inside the PML layer, and the split-field equations for the polar PML method,
we have a set of plane wave solutions (29), decaying in
the layer region for all frequencies, g, and directions of Hr

t
5 2

1
r

(Ezr 1 Ezu)
u

2
f (r)

r
Hrpropagation, f, while remaining continuous across the vac-

uum–layer interface. Such solutions (29) will be referred
to as matched plane wave solutions. Hu

t
5

(Ezr 1 Ezu)
r

2 f 9(r)Hu

(34)
Let us assume that the PML region is outside a square

bounded by x 5 2a, x 5 a, y 5 2a, and y 5 a. Then we Ezr

t
5

Hu

r
2

1
r

Hr

u
2

f (r)
r

Ezrcan choose «(x) and e(y) such that

«(x) 5 Cux 2 aun, n $ 2, (30) Ezu

t
5

Hu

r
2 f 9(r)Ezu ,

outside the rectangular region and «(x) 5 0 inside the
rectangular region. This choice ensures that «(x) 5 0, as where f (r) is a function to be specified later.
well as «x(x) 5 0, at the vacuum–layer interface. The choice It can be verified that these equations admit the follow-
for e(y) is similar. ing plane wave solutions:

4.2.2. The Polar PML Methods Hr 5 2sin(u 2 f)eig(t2r cos(u2f))e2f (r) cos(u2f)

Recall the nondimensional Maxwell’s equations in po- Hu 5 2cos(u 2 f)eig(t2r cos(u2f))e2f (r) cos(u2f)

(35)lar coordinates,
Ezr 5 sin2(u 2 f)eig(t2r cos(u2f))e2f (r) cos(u2f)

Ezu 5 cos2(u 2 f)eig(t2r cos(u2f))e2f (r) cos(u2f).Hr

t
5 2

1
r

Ez

u

Let the vacuum–layer interface be the circular boundaryHu

t
5

Ez

r
(31) with r 5 r0 . Hence, we should have f (r) 5 0 for r , r0 .

Following the considerations of the absorbing and reflec-
tionless properties of the polar PML method, f (r) mustEz

t
5

Hu

r
1

Hu

r
2

1
r

Hr

u
,

satisfy the requirements

with the plane wave solutions given as f (r0) 5 0 (36)

Hr 5 Hx cos u 1 Hy sin u 5 2sin(u 2 f)eig(t2r cos(u2f)) and

Hu 5 2Hx sin u 1 Hy cos u 5 2cos(u 2 f)eig(t2r cos(u2f)) (32)
f (r) . 0 for r . r0 , (37)

Ez 5 eig(t2r cos(u2f)).

so that the plane wave solution decays for r . r0 . We also
require thatThe extension of the PML method, proposed by Navarro

et al. [11], results in the following split-field equations:
f 9(r) . 0 for r . r0 . (38)

Hr

t
5 2

1
r

(Ezr 1 Ezu)
u An example of a valid choice of f (r) is

f (r) 5 C(r 2 r0)n, n 5 1, 2, ..., r $ r0 . (39)Hu

t
5

(Ezr 1 Ezu)
r

2 g(r)Hu

(33)
where C is a positive constant. This family of functionsEzr

t
5 2

1
r

Hr

u satisfies the requirements put forward in Eqs. (36)–(38).
One difference between the new polar PML method,

Eq. (34), and the rectangular PML method, Eq. (27), is thatEzu

t
5

Hu

r
1

Hu

r
2 g(r)Ezu .

the vacuum–layer interface of the former PML method is
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a circle and can be represented by one grid line in polar does not extend to infinity and there will be reflections from
the outer boundary of the truncated domain. In this casecoordinates, while the vacuum–layer interface of the rect-

angular PML method, Eq. (27), is a rectangle and is repre-
sented by four grid lines. The complexity of the interface uf 2 uu . f/2.
of the rectangular PML method results in several regions
of different properties inside the layer, which are not opti- However, since r decreases now, these waves will also
mal for reflectionless wave absorption [8]. decay. Moreover, since

By looking at the decaying factor e2f (r) cos(u2f) in Eq. (35),
one observes that the plane wave solutions decay in the di-
rections cos2(f 2 u) f 9(r) 1 sin2(u 2 f)

f (r)
r

$ min S f 9(r),
f (r)

r D. 0,

uf 2 uu , f/2. (40) (44)

To get an idea of the rate of change of the magnitude of
for r $ r0 , we have a lower bound for the rate of decaythe wave, one may look at the directional derivative of the
regardless of the direction of wave propagation f, in thedecaying factor.
layer region away from the interface. We note that we

LEMMA 4.1. Let l 5 (cos f, sin f) be the normalized cannot find such a lower bound for the rectangular PML,
wave vector and assume that f (r) satisfies the conditions Eq. (27).
(37)–(38). Then all plane waves decay in every propagation
direction as 4.2.3. PML Implementation Issues

The calculations reported in this paper have been carried
out using the multidomain approach, which is a very natu-

e2f (r) cos(u2f)

l
, 0, (41)

ral setting for the PML methods as the free space equations
are solved in the inner subdomains while the PML equa-

for any f. tions are solved in the absorbing layer subdomain only.
Note, however, that the free space domain has only threeProof.
unknowns (Hx , Hy , and Ez in the rectangular case and Hr ,
Hu , and Ez in the polar case), whereas the PML layere2f (r) cos(u2f)

l involves four unknowns (the electric field Ez is split into
two; see Eqs. (27) and (34)), such that the patching condi-
tions become less trivial. To overcome this difficulty we5 cos f

e2f (r) cos(u2f)

x
1 sin f

e2f (r) cos(u2f)

y first observe that the PML system has the same number
of positive and negative eigenvalues as the free space sys-

5 cos f cos u
e2f (r) cos(u2f)

r
2 cos f

sin u

r
e2f (r) cos(u2f)

u
(42) tem, the extra eigenvalue being zero (this is exactly the

reason why the PML system is only weakly well-posed [9]).
We also observe that by adding and subtracting the third1 sin f sin u

e2f (r) cos(u2f)

r
1 sin f

cos u

r
e2f (r) cos(u2f)

u and fourth equations in Eq. (27) we recover Maxwell’s
equations for Hx , Hy , and Ezx 1 Ezy and the unknown

5 cos(f 2 u)
e2f (r) cos(u2f)

r
2

sin(u 2 f)
r

e2f (r) cos(u2f)

u
Ezx 2 Ezy comes in the first three equations as a lower
order term, thus not affecting the eigenvalues and the ei-
genvectors of the system. We therefore use the characteris-

5 2Fcos2(f 2 u) f 9(r) 1 sin2(u 2 f)
f (r)

r G e2f (r) cos(u2f). tic boundary treatment to patch Hx , Hy , and Ezx 1 Ezy in
the PML subdomain with Hx , Hy , and Ez in its neighboring
subdomain, and we patch Hr , Hu , and Ezr 1 Ezu in theHence we have
PML subdomain with Hr , Hu , and Ez in its neighboring
subdomain in the polar case.e2f (r) cos(u2f)

l
, 0 (43) The above discussion indicates the importance of impos-

ing «x(x) 5 ey(y) 5 0 along the interface in the rectangular
case and f 9(r) ur5r0

5 0 in the polar case. For the polar PML
for any f and any u.

method, one can choose the functions in Eq. (39) with
n $ 2 and the constant C can be tuned for specific computa-The lemma emphasizes that all plane waves entering

the PML layer decay exponentially along any direction of tions. Note that f (r)/r and f 9(r) appear in the differential
equations and need to be computed.propagation inside the layer. The PML layer, however,
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the maximum norm of «(x) and e(y) should be bounded
by some constant for stability consideration.

To test the reflecting and absorbing properties of the
PML method, the layer is backed up by a perfect electric
conductor by imposing Ez 5 0 at the outer boundary.
However, any ABC that is appropriate for the PML type
equation can be applied at the outer boundary; e.g., charac-
teristic type boundary conditions can be straightforwardly
applied at the outer boundary.

5. NUMERICAL EXPERIMENTS

To show the efficacy of the multidomain pseudospectral
methods for the simulation of electromagnetic wave scat-
tering, as well as the efficacy of the proposed absorbing
boundary conditions, we have implemented the methods
discussed in the previous sections.

We shall consider simulation of two-dimensional TM
wave scattering by perfectly conducting circular and elliptic
cylinders. Due to the linearity of Maxwell’s equation, we
only compute the purely scattered field by using the bound-

FIG. 2. An example of a mesh with an embedded rectangular interface ary condition
suitable for the direct implementation of the rectangular PML method
on the polar grid.

Esc 5 2Einc , (46)

at the cylinder surface.To apply the rectangular PML method in the polar coor-
Denote the radius of the circular cylinder by a and thedinates considered in this work, a rectangular interface is

wave number of the incident wave by k. The complexityfitted inside the absorbing layer subdomain of the multido-
of the problem increases with the frequency of the incidentmain mesh (see Fig. 2 for a typical 2-domain grid and
wave; e.g., the dynamic range for scattering by a circularthe embedded rectangular interface). The accuracy and
PEC cylinder of electrical size ka 5 21f is about 30 dB,efficiency of the PML method depends critically on the size
while the dynamic range for scattering by an elliptic PECof the absorbing layer, i.e., the area outside the rectangular
cylinder (major axis 5 0.5 m, minor axis 5 0.1225 m andinterface in Fig. 2. This is a particular concern in connection
k 5 42f) is about 35 dB.with high order methods as the efficiency of the absorbing

To assess the accuracy of the overall scheme in combina-layer has to match the accuracy of the overall scheme. To
tion with one of the absorbing layer methods discussed inincrease the total area of the absorbing layer we apply the
the previous sections, we shall also compute the scatteringcubic mapping, Eq. (21), as in the case of the ML method,
using a traditional rectangular FD-TD method (see, e.g.,to stretch the absorbing layer subdomain in the radial di-
[12]), with the rectangular PML method, Eq. (27), as therection without sacrificing the accuracy of the overall
absorbing boundary condition. However, to maintain ascheme close to the vacuum–layer interface.
comparable accuracy in the rectangular FD-TD simula-For the rectangular PML we choose
tions we shall need meshes of substantially larger size. In
the FD-TD method, the perfectly conducting cylinder is

«(x) 5 Cux 2 x0un, e(y) 5 Cuy 2 y0un. (45) modeled as a cylinder with the permitivity being equal to
that of free space but with a very high conductivity.

The radar cross section (RCS) is adopted as a mainThe constant C can be tuned, x 5 x0 , y 5 y0 is the interface,
and n is an integer (usually 2–4), much as in the case of criterion for assessing the accuracy of the calculation of

different schemes. A near-to-far-field transformation isthe ML scheme discussed in Section 4.1. These functions
have gradual transition from 0 at the interface and we have used to get the far-field RCS from the near-field values

[12]. The RCS is validated in two ways. The near-to-far-found that, although by increasing n we can increase the
order of smoothness at the interface, the overall absorption field transformation and the corresponding RCS computed

along different closed contours should be the same up tostrength of the PML layer decreases, since it is proportional
to the area between the profile and the x axis. Note that numerical error. We also evaluate the RCS in the case of
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scattering by a circular cylinder using the infinite series
analytical solution [15] and refer to this RCS as ‘‘exact.’’

In our presentation of the RCS results, the bistatic RCSs
are plotted in cylindrical form or angle-dB form, whichever
yields more information. In order to see the difference in
the backscatter region, being the most difficult to resolve,
we cut the forward scatter region in many plots.

As convention for our pseudospectral multidomain mesh
we use l 3 m 3 n, referring to l points in the azimuthal
direction, m points in the radial direction and n subdomains
of size l 3 m (1 for each subdomain).

5.1. Scattering by Circular Cylinders

The purpose of this section is to evaluate two issues
raised in the previous discussion. The first of these involves
the introduction and performance of the multidomain
pseudospectral framework for the solution of two-dimen-
sional TM scattering by perfectly conducting cylinders, as
compared to the traditional FD-TD method.

The second issue concerns the relative merit of different
FIG. 3. Comparison of RCS’s at different time for the one-domain

absorbing layer techniques, among these the ML layer Fourier–Chebyshev method with characteristic boundary condition. Elec-
method, Eq. (26), the rectangular PML, Eq. (27), and a trical size of the cylinder is ka 5 7f.
new polar PML method, Eq. (34). We shall attempt to
arrive at an understanding of which of these methods is
most useful in connection with the pseudospectral multido- Consider first the problem of scattering by a circular

cylinder with ka 5 f. In the multidomain simulations, themain approach. This last issue is of significant importance
to the accurate simulation of scattering. In previous work interface of the absorbing layers is Fd of a wavelength away

from the cylinder surface and we use a resolution of 18[4], however, the use of characteristic boundary conditions
was advocated while in Section 4.1 we discussed the insuf- Fourier modes and 17 Chebyshev modes in each subdo-

main. As the absorbing boundary condition we use eitherficiency of such an approach for long time integration. To
illustrate this point, let us consider a simple example. To a direct implementation of the rectangular PML method,

Eq. (27), the ML method, Eq. (26), or the new polar PMLisolate the effects of the boundary condition we shall use
a single domain Fourier–Chebyshev method with a charac- method, Eq. (34).

For the FD-TD solution, obtained using a rectangularteristic boundary condition at the outer boundary. The
electrical size of the cylinder is ka 5 7f (k: wave number FD-TD method with the rectangular PML method as an

absorbing layer, we use a grid of the size 321 3 321, corre-and a: radius of the cylinder). The mesh we use is 84 3
17 3 1 and the exterior boundary is placed three wave- sponding to 160 grid points per wave-length, with the vac-

uum–layer interface being about Fd of a wavelength awaylengths away from the cylinder surface, a scenario similar
to that used in [4]. To show the accuracy of this approach, from the scatter.

All the simulations are carried out over many wave peri-the RCS results at different times are compared in Fig. 3.
One clearly observes that the results are accurate before ods to ensure that the RCS is stationary. In Table I, we

compare the discrete L2 error of the RCS and the computa-the reflections from the exterior boundary returns, after
which the accuracy deteriorates in time, supporting the tion time of the rectangular FD-TD method and the two-

domain Fourier–Chebyshev methods. The computationsanalysis of Section 4.1 and emphasizing the insufficiency
of the characteristic type boundary condition for long are terminated after 30 wave periods for both the FD-TD

method and the Fourier–Chebyshev methods.time integration.
Let us now return to a comparison of the performance Based on the results given in Table I, several conclusions

may be made. Indeed, we find that comparing the accuracyof the multidomain pseudospectral scheme and the rectan-
gular FD-TD method with PML boundary conditions. as well as the computational efficiency supports the use of

pseudospectral method for scattering problems. In particu-We shall present results obtained with a two-domain
scheme only. However, several different computations lar, comparing the results obtained using the FD-TD

method with PML boundary conditions (FD-TD-PML)with various numbers of subdomains have been completed,
yielding results equivalent to the ones reported here for with the results obtained using the multidomain scheme

with the same boundary condition (FC-PML) we find thatthe two-domain case.
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TABLE I

Comparison of the Rectangular FD-TD Method with a 16-cell
Rectangular PML Layer (FD-TD-PML) and the 2-Subdomain
Fourier–Chebyshev Method with a Rectangular PML Layer
(FC-PML), a ML Layer (FC-ML), or the New Polar PML Layer
(FC-PPML)

Discrete L2 CPU time
Method ka Mesh RCS error (dB) (seconds)

FD-TD-PML f 321 3 321 4.50E-2 1402
FC-PML f 18 3 17 3 2 9.88E-3 37
FC-ML f 18 3 17 3 2 6.26E-3 32
FC-PPML f 18 3 17 3 2 6.40E-4 27

the latter is not only more accurate but also significantly
faster. Moreover, the results in Table I also indicate that
using the ML method in connection with the multidomain
scheme (FC-ML) yields results comparable to those ob-

FIG. 5. RCS comparison for the new polar PML (PPML) method andtained with the rectangular PML method for this particu-
the Navarro polar PML (PPML) method. Electrical size of the cylinder is

lar problem. ka 5 7f.
The best results are obtained by combining the new

polar PML method, Eq. (34), with the multidomain
scheme, being orders of magnitude better than those com- simulating scattering from a cylinder of a larger electrical
puted using the FD-TD method and obtained at a signifi- size as ka 5 7f. For the pseudospectral multidomain time
cantly lower computational cost. domain scheme using the rectangular PML method, we

In Fig. 4, we plot the RCS resulting from using the use an 84 3 17 3 2 mesh. For the FD-TD method, we
rectangular FD-TD method with the PML method and the have to use a very fine grid, 1101 3 1101, to ensure a
Fourier–Chebyshev method with the rectangular PML for reasonable accuracy. The RCS resulting from the FD-TD

method has obvious oscillation in the back scatter region
while that of the spectral PML method agrees very well
with the exact RCS. These results are consistent with those
put forward in Table I illustrating the superiority of the
pseudospectral multidomain scheme over the FD-TD
method. It is therefore reasonable that using the polar
PML method will produce even better results.

It seems clear that using a pseudospectral multidomain
scheme for the solution of scattering problems results in
an algorithm which is markedly more efficient as well as
accurate as compared to the more traditional FD-TD
scheme.

Next, we turn towards the performance of the new polar
PML method, Eq. (34), and compare it to the PML method
in polar coordinates suggested in [11], Eq. (33)], which we
refer to as the Navarro polar PML method.

We consider again scattering by a circular cylinder of
electrical size ka 5 7f, and use a two-domain multidomain
scheme with a standard Fourier–Chebyshev mesh of size
84 3 17 3 2 for both cases.

In Fig. 5 we present the results of these two approaches.
We find that the new polar PML method increases theFIG. 4. RCS comparison for the FD-TD method and the pseudospec-
accuracy substantially over the Navarro polar PMLtral multidomain method, both using the rectangular PML method. Elec-

trical size of the cylinder is ka 5 7f. method. The discrete L2 error of the RCS obtained using
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the reference to obtain the normalized error of the scat-
tered field, Ez . In Table II we compare the discrete L2

error for both the RCS and the normalized error for the
scattered field Ez as obtained using the three different
types of absorbing boundary conditions.

From Fig. 6 as well as from Table II, it is clear that all
three combinations of the scheme and the absorbing layer
methods yield satisfying results for this problem, being
nontrivial due to its large electrical size. However, it is also
clear that the polar PML method, Eq. (34), outperforms the
two alternatives, even though only the standard Fourier–
Chebyshev mesh is used in its computation, i.e., we have
not applied the mapping in this case to increase the total
absorbing area, while this was found to be necessary for the
ML method, as well as for the rectangular PML method, to
arrive at results of accuracy comparable to that found with
the polar PML method. We also note that the error of the
ML method is only 20–30% of that of the direct implemen-
tation of the rectangular PML method.

Using the new polar PML method, an even more accu-FIG. 6. RCS error plots of the rectangular PML method, the ML
rate result can be obtained by refining the mesh in themethod, and the polar PML method. Electrical size of the cylinder is

ka 5 21f. azimuthal direction. In this experiment, we use a 384 3
17 3 2 mesh and get a better result for the RCS, as observed
in Fig. 7. The highly oscillatory RCS is resolved to within
0.003 dB of the exact one.the new polar PML method is only 3.4% of that of the

Navarro polar PML method. In our numerical experiments It seems clear that the combination of the pseudospectral
multidomain scheme and the new polar PML methodwe also find that the best results with the Navarro polar

PML method are obtained by using g(r) 5 f 90(r), with f0(r) yields an algorithm which is superior to the alternatives
considered here in accuracy, as well as efficiency.being the best choice for the function f (r) in the new polar

PML method. We should note that the introduction of several domains
may seem as an unnecessary complication for the solutionOne of the prime arguments for considering the use of

high-order methods, and in particular, spectral methods, of the problems considered here. However, we remind the
reader that the purpose here is to demonstrate the utilityis the ability to accurately obtain solutions to electrically

large problems. Let us therefore consider the situation of of the multidomain approach within computations of elec-
tromagnetic scattering. Having established that the multi-high frequency scattering by a cylinder of size ka 5 21f.

This problem is out of the computational capacity of the domain approach suggested and studied here is stable and
accurate supplies the foundation for the development ofFD-TD method on most computers, since a mesh larger

than 2000 3 2000 should be used, this estimate being based a more general pseudospectral multidomain scheme for
the simulation of scattering by general two- and three-on the accuracy obtained for the case of ka 5 7f.

For the simulations of this electrically large-size scatter-
ing problem, we use the multidomain Fourier–Chebyshev
method and one of several of the formerly introduced

TABLE II
absorbing layer methods, i.e., the direct implementation

Comparison of the Discrete L2 Error Using a Pseudospectralof the rectangular PML, the new implementation of the
Multidomain Scheme for the Computation of Scattering by aML method, or the new polar PML method. Irrespective
Cylinder of Size ka 5 21fof the choice of method, the computational domain is

backed up by PEC (Ez 5 0) at the outer domain boundary. Method Method Method
The computational grid we use for all cases is 256 3 Error FC-PML FC-ML FC-PPML
17 3 2, i.e., just about two points per wavelength in the

Error for RCS (dB) 4.90E-2 1.54E-2 2.6E-3azimuthal direction.
Normalized error for Ez 3.50E-3 7.13E-4 1.41E-4In Fig. 6 we display a comparison of the RCS error

for the three choices of absorbing boundary conditions Note. We show the accuracy of the result obtained when using the
considered here. We also solve the same problem using a rectangular PML method (FC-PML), the ML method (FC-ML) or the

new polar PML method (FC-PPML), as the absorbing layer.very large mesh (256 3 17 3 20) and take this solution as
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especially in the x direction. This induces an unwanted
time step restriction in the computation, as well as loss of
accuracy in regions where the mesh is coarse. The Cheby-
shev grid point distribution in the y direction tends to get
too coarse away from the thin ellipse.

We consider, therefore, the following kind of modified
transformation in our mesh generation,

x 5
f (u)

2
d ? cosh u ? cos v,

(48)
y 5 Asd ? sinh u ? sin v,

where f (u) is chosen to balance the grid-point distribution
in the x direction and the y direction. We may also apply
the cubic grid mapping in the inner domains to balance
the grid distribution in the radial direction.

In the numerical experiments, waves of any angle of
incidence and elliptic cylinders of different ratios between
the major and minor axes are considered. Having made
the validations for the circular cylinder case, we will useFIG. 7. RCS result of the polar PML method for a finer mesh. Electri-
the result of a very large mesh (l 3 17 3 20) as a reference,cal size of the cylinder is ka 5 21f.
referred to as ‘‘exact.’’ It is verified that the RCS obtained
in different subdomains of the large mesh is almost in-
variant.

dimensional complex objects [16]. Moreover, within such In the first simulation, the major axis of the ellipse is
a framework, provided the vacuum-layer is made circular, 0.5 m and the minor axis of the ellipse is 0.3808 m and we
it is straightforward to apply the new polar PML method, use only l 5 20 Fourier modes in the azimuthal direction.
Eq. (34). The wave number of the incident wave is k 5 2f. The

angle of the incident wave is 458. We use the multidomain
5.2. Scattering by Elliptic Cylinders

Fourier–Chebyshev method with the direct implementa-
tion of the PML method as the absorbing boundary condi-To consider problems of a less trivial kind and of in-

creased dynamics range, we present two simulations of tion. See Fig. 8 for the mesh generated for this problem
and note that we have used the cubic grid mapping in bothelectromagnetic wave scattering by elliptic cylinders. As

boundary conditions we have used the direct implementa- subdomains. In Fig. 9, we give the RCS comparison. Note
that the two-domain result is resolved to within 0.018 dBtion of the rectangular PML method or the ML method.

By embedding a circular interface into the grid one could of the reference.
In the second simulation, the major axis of the ellipselikewise use the new polar PML method as the absorbing

boundary layer. is 0.5 m and the minor axis of the ellipse is 0.1225 m. The
wave number of the incident wave is k 5 42f and we useThe elliptic cylindrical coordinates, (u, v), are related

to the rectangular Cartesian coordinates, (x, y), by the l 5 256 Fourier modes in the azimuthal direction. The
angle of the incident wave is 458. The dynamic range oftransformation
this problem is about 35 dB, and the bistatic RCS is highly
oscillatory. We use the ML method with the cubic gridx 5 Asd ? cosh u ? cos v,

(47) mapping and solution filtering techniques for this simula-
y 5 Asd ? sinh u ? sin v, tion. The type of transformation given in Eq. (48) is also

applied to generate the mesh for this problem; see Fig. 10.
where 0 # u , y, 0 # v , 2f and d is the interfocal In Fig. 11 we show the RCS results. Note that the highly
distance. The scattering body is the elliptic cylinder with oscillatory RCS is resolved to within 0.2 dB of the ref-
the surface u 5 const. erence.

When the elliptic cylinder is fat, i.e., an aspect ratio
about 1, one can use this transformation to generate the 6. CONCLUSIONS
mesh outside the elliptic cylinder. However, when the ellip-
tic cylinder is thin, the grid points generated by this trans- The purpose of this paper has been twofold. The first

objective was to introduce pseudospectral multidomainformation tend to cluster towards the cylinder surface,
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FIG. 10. The mesh part (256p17p3) used for simulating scattering
from a strongly elliptic cylinder.

conditions in dedicated subdomains while at the same time
resulting in a highly efficient algorithm in terms of required
computational cost. However, more importantly, the dem-
onstration and establishment of a stable and accurate pseu-
dospectral multidomain framework opens up for the devel-
opment of general purpose spectral algorithms for the
solutions of scattering problems in arbitrary complex ge-

FIG. 8. The mesh used for simulating scattering from a mildly ellip- ometries. We are presently in the process of pursuing this
tic cylinder.

issue further [16].
The second theme of this paper has been a detailed

comparison of several schemes acting as absorbing bound-
schemes for the accurate simulation of electromagnetic ary layers with the emphasis on identifying schemes that
scattering by perfectly conducting objects. Indeed, it was are sufficiently accurate to be applicable in a pseudospec-
shown that regarding accuracy as well as efficiency, such tral framework. It became clear, through analysis as well as
an approach has several things to offer over the more computations, that the characteristic boundary condition
traditional FD-TD schemes. In the present work the main yields only poor results, in particular for long time integra-
advantage of the multidomain framework remains the ease tion. Considering the rectangular PML method [8] as well
by which we may impose complicated absorbing boundary as a new implementation of an ML method, we found that

FIG. 9. RCS result from the multidomain pseudospectral method
with the rectangular PML method for simulating scattering by a fat FIG. 11. RCS result from the multidomain pseudospectral method

with the ML method for simulating scattering by a thin elliptic cylinder.elliptic cylinder.
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